Multilingual language models (MLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. So far, only ~ 28 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a set of massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to four MLMs that each cover any number of African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks and achieves 82.27 average F-1. We also perform error analysis on our models' performance and show the influence of mutual intelligibility when the models are applied under zero-shot settings. We will publicly release our models for research.
translated by 谷歌翻译
Task agnostic generative pretraining (GPT) has recently proved promising for zero- and few-shot learning, gradually diverting attention from the expensive supervised learning paradigm. Although the community is accumulating knowledge as to capabilities of English-language autoregressive models such as GPT-3 adopting this generative approach, scholarship about these models remains acutely Anglocentric. Consequently, the community currently has serious gaps in its understanding of this class of models, their potential, and their societal impacts in diverse settings, linguistic traditions, and cultures. To alleviate this issue for Arabic, a collection of diverse languages and language varieties with more than $400$ million population, we introduce JASMINE, a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-13 billion parameters. We pretrain our new models with large amounts of diverse data (400GB of text) from different Arabic varieties and domains. We evaluate JASMINE extensively in both intrinsic and extrinsic settings, using a comprehensive benchmark for zero- and few-shot learning across a wide range of NLP tasks. We also carefully develop and release a novel benchmark for both automated and human evaluation of Arabic autoregressive models focused at investigating potential social biases, harms, and toxicity in these models. We aim to responsibly release our models with interested researchers, along with code for experimenting with them
translated by 谷歌翻译
Language identification (LID) is a crucial precursor for NLP, especially for mining web data. Problematically, most of the world's 7000+ languages today are not covered by LID technologies. We address this pressing issue for Africa by introducing AfroLID, a neural LID toolkit for $517$ African languages and varieties. AfroLID exploits a multi-domain web dataset manually curated from across 14 language families utilizing five orthographic systems. When evaluated on our blind Test set, AfroLID achieves 95.89 F_1-score. We also compare AfroLID to five existing LID tools that each cover a small number of African languages, finding it to outperform them on most languages. We further show the utility of AfroLID in the wild by testing it on the acutely under-served Twitter domain. Finally, we offer a number of controlled case studies and perform a linguistically-motivated error analysis that allow us to both showcase AfroLID's powerful capabilities and limitations.
translated by 谷歌翻译